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Abstract. The quasinormal modes (QNMs) of a black hole (BH) may be identified as a class
of damped, classical oscillations in spacetime, emergent as part of the late-stage response to a
perturbation of the BH. In a recent paper, we utilised the inverse multipolar expansion method
proposed by Dolan and Ottewill to investigate the quasinormal frequencies of 4D Schwarzschild,
Reissner-Nordström, and Schwarzschild de Sitter BHs within the eikonal limit for fields of spin
s = {0, 1/2, 1, 3/2, 2}. Here, we extend this method to the calculation of the radial component
of the QNM wavefunctions within the Schwarzschild BH spacetime for each of these fields,
investigating specifically the behaviour of these wavefunctions within the large-` regime.

1. Introduction
The regular detection of binary black hole (BH) mergers has provided us with a wealth of
data against which we may test our extant models of gravitational-waves (GWs) and their BH
sources [1]. The demonstrable consensus between GW data and modelling [2] validates our
understanding of BH mergers as three-phase events successfully described using (i) the post-
Newtonian approximation, (ii) numerical relativity, and (iii) BH perturbation theory. These
phases are, respectively, (i) inspiral, a long adiabatic stage as the orbit shrinks and GW emission
increases; (ii) merger, a violent coalescence of these compact bodies into a single BH such that
GW emission peaks; (iii) ringdown, where the final BH emits damped GWs as it relaxes into a
stationary state [3, 4].

The damped oscillations in spacetime from which ringdown is comprised are known as the
quasinormal modes (QNMs). Their corresponding quasinormal frequencies (QNFs) may be
decomposed into a real and imaginary part, where the former represents the physical oscillation
frequency and the latter is related to the decay timescale of the BH’s perturbation. Unlike
the oscillations within the inspiral and merger phases, the QNFs are independent of the initial
conditions; they depend exclusively on the characteristics of the final BH [5]. This, as well as
their relationship to gauge-gravity duality [6] and possibly even BH area quantisation [7], had
led to immense interest in QNFs within the field of BH physics and beyond.

However, the computation of BH QNFs is wrought with technical difficulty due to the
inherently dissipative nature of the BH system. This is a consequence of the boundary conditions
thereof: in BH spacetimes with a cosmological constant Λ ≥ 0, energy is irrevocably lost at the
BH event horizon and at spatial infinity (or at the cosmological horizon of the de Sitter (dS) cases
denoted by Λ > 0). As such, QNMs do not form a complete set in these contexts (see Ref. [8] for
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further discussion). Finally, QNMs may be shown to be non-normalisable in asymptotically-flat
and dS spacetimes (but can be normalisable in anti-de Sitter (AdS) spacetimes) [9].

To contend with these technical challenges, a number of methods have been developed
within the QNM literature (concisely reviewed in Refs. [5, 9]). As explained in Ref. [10], the
computational method applied to solve for QNFs must be chosen carefully such that the specifics
of the BH spacetime and wave equation dependencies are accommodated, for a certain approach
may fail under conditions where another proves more accurate. Here, we utilise a method derived
directly from the BH context: the inverse multipolar expansion method put forth by Dolan and
Ottewill in Ref. [11]. The “Dolan-Ottewill” method involves the introduction of a novel ansatz
for the QNM wave equation (described in section 2) constructed from the circular null geodesics
of a spherically-symmetric BH in non-AdS spacetime. The QNF can then be solved for through
an iterative process, and emerges as an expansion in inverse powers of the multipolar number
(`). Consequently, the method is explicitly useful in exploring large-` asymptotics [12].

In this work, we expand upon our paper, Ref. [13], by explaining the application of the Dolan-
Ottewill method in greater detail. We then demonstrate how the method can be extended to the
computation of QNM wavefunctions of spin s = {0, 1/2, 1, 3/2, 2} for the 4D Schwarzschild BH.
Finally, we impose the large-` limit on the wavefunctions and assess their behaviour therein.

2. QNM effective potentials in the 4D Schwarzschild BH spacetime
A non-rotating, spherically-symmetric, 4D BH may be described in its most general terms by

ds2 = gµνdx
µdxν = −f(r)dt2 + f(r)−1dr2 + r2

(
dθ2 + sin2 θdφ2

)
. (1)

The Schwarzschild metric function is given by f(r) = 1− rH/r, with the event horizon located
at rH = 2M (setting ~ = G = c = 1). To analyse the perturbation of such a BH, we may

decompose the spacetime into a background metric g
B

µν
G

and a small perturbing term hµν ,

g′µν = g
B

µν

G
+ hµν , hµν � g

B

µν

G
. (2)

We then solve the consequent system of linear differential equations that satisfy Einstein’s
vacuum field equations [14]. If we consider a scalar test field Φ as a perturbing field on this
linearised gravitational background, it may be shown that hµν and Φ decouple such that the
metric perturbations described by hµν can be set to zero (see Ref. [5] for details). With the
tortoise coordinate dx/dr = 1/f(r), we can isolate the radial behaviour of the QNM as

d2

Φ(x) +
[
ω2 − Veff (r)

]
Φ(x) = 0 , (3)

dx2

where ω represents the QNF. The effective QNM potentials associated with fields of integer spin
s within the Schwarzschild BH spacetime can be concisely expressed through

Veff (r) =
f(r)

r2

[
`(`+ 1) +

2M(1− s2)

r

]
, (4)

s =


0 , scalar perturbations ⇒ (1− s2) = 1

1 , electromagnetic perturbations ⇒ (1− s2) = 0

2 , gravitational perturbations: vector-mode ⇒ (1− s2) = −3 .

On the basis of the isospectrality of the spin-2 scalar- and vector-modes [15], here we shall
consider only the vector-modes. For half-integer fields, the QNM potentials can be cast as
isospectral supersymmetric partners through

Veff = ±f(r)
d

dr
W +W 2 , W =

√
f(r)

r
κz , (5)
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where the superpotential W is dependent on κ ≡ j+ 1/2, the spinor eigenvalue on the 2-sphere,
and

κz =

 κ , s = 1/2

κ
κ2 − 1

κ2 − f(r)

κ = `+ 1 , Dirac perturbations

, κ = `+ 2 , Rarita-Schwinger perturbations s = 3/2 .
(6)

respectively [19]. Note that there exists a distinction between the definition of κ: while j = `±1/2
for Dirac cases [16], j = ` ± 3/2 for Rarita-Schwinger fields [17, 18]. Here, as in Ref. [13], we
define the spinor eigenvalue on the 2-sphere in terms of ` (where ` is an integer).

3. The Dolan-Ottewill method: Schwarzschild QNFs
The primary objective of the multipolar expansion method is to express the QNF as a linear
expansion in inverse mutlipolar numbers,

ω =
∑
k=−1

ωkL
−k , L = `+ 1/2 , (7)

where each ωk of the summation is computed iteratively. The procedure begins by defining the
novel ansatz, ∫ x

(8)Φ(r) = eiωz(x)v(r) , z(x) = ρ(r)dx ,

where the ansatz must adhere to the non-AdS boundary conditions,

(9)f(r)→ 0 , bckc(r)→ −1 as x→ −∞ ,

f(r)/r2 → 0 , bckc(r)→ +1 as x→ +∞ . (10)

These convey the fact that the event horizon is encountered as x→ −∞ and an asymptotically-
flat region or cosmological horizon is approached as x → +∞. The ansatz may be substituted
into equation (3) to obtain

f(r)
d

dr

(
f(r)

dv

dr

)
+ 2iωρ(r)

dv

dr
+

[
iωf(r)

dρ

dr
+ (1− ρ(r)2) ω2 − V (r)

]
v(r) = 0 . (11)

Though not obvious by inspection, this equation is simpler to solve than equation (3) as it lends
itself with greater ease to the iterative procedure of Dolan and Ottewill.√mWe ay then define ρ = bckc(r). The ansatz therefore depends on the impact parameter
b = r/ f(r) and the newly-defined function k(r) = b−2−f(r)/r2, both of which are evaluated at
the critical orbit r = rc. This rc can be derived using the metric function, rc = 2f(r)/∂rf(r)|r=rc .
Finally, we may define the function v(r) as a further expansion in L−k, namely

v(r) = exp

{∑
k=0

Sk(r)L
−k
}
. (12)

For the Schwarzschild BH spac ime, where we opt to set M = 1, the components of the

ansatz are given by rc = 3 , bc =

et√
27, and thus ρ(r) = (1− 3/r) (1 + 6/r)1/2. We substitute)uthese into equation (11), in conj nctio with equations (7) and (12) expanded to our orderc(

of choice. Here, we select O L−6 . Lastly, we substitute the potential corresponding to our
perturbing field of interest.

The procedure then involves collecting powers of L, setting the coefficient to zero, and solving
for ωk and S′k(r) for monotonically increasing values of k. The process can become fairly
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Table 1: The inverse multipolar expansions for the effective QNFs of spin s at order O(L−k),
from Ref. [13]. Odd (even) values of k correspond to real (imaginary) expansion terms. While
the lowest-order terms remain constant for each field, we find that for each k ≥ 0, the magnitude
of the L−k coefficients increases with s. Note that for QNFs of half-integer spin, we parametrise
the multipolar number as L→ L̄ = κ, using the values of κ specified in equation (6).

s bc
∑6

k=−1 ωkL
−k

Perturbations of integer spin

0 L− 2
i + 7

216L −
137

7776L2 i+ 2615
1259712L3 + 590983

362797056L4 i− 42573661
39182082048L5 i

1 L− 2
i − 65

216L + 295
7776L2 i− 35617

1259712L3 + 3374791
362797056L4 i− 342889693

39182082048L5

+ 11084613257
8463329722368L6

+ 74076561065
8463329722368L6 i

2 L− 2
i − 281

216L + 1591
7776L2 i− 710185

1259712L3 + 92347783
362797056L4 i− 7827932509

39182082048L5 − 481407154423
8463329722368L6 i

Perturbations of half-integer spin

1/2 − 2
i − 11

216L̄
− 29

7776L̄2 i+ 1805
1259712L̄3 + 27223

362797056L̄4 i+ 23015171
39182082048L̄5 − 6431354863

8463329722368L̄6 i

3/2

L̄

L̄− 2
i − 155

216L̄
+ 835

7776L̄2 i− 214627
1259712L̄3 + 25750231

362797056L̄4 i− 2525971453
39182082048L̄5 + 292606736465

8463329722368L̄6 i

straightforward with the aid of the Coefficient and Solve functions within the Mathematica
environment. In this manner, we may compute the ωk terms of equation (7), evaluate them at
r = rc, and express the QNF through the L−k-dependent expansions provided in table 1. The
lowest order terms are as follows:

L2 : 27ω2
−1 − 1 = 0 ⇒ ω−1 = ± 1√

27
;

L1 : 2iω−1

(
1 +

6

r

)1/2(
1− 3

r

)
0S
′ +

54ω−1ω0

r2
+

27iω

r3

(
1 +

6

r

)−1/2
= 0

⇒ ω0 = − i

2
√

27

0⇒ S′ (r) =

√
27

r(r + 6)(r − 3)

[(
1 +

6

r

)1/2

−
√

27

r

]
.

Thus, for every ωk (k ≥ 0) of table 1, we solve also for a S′k(r) term. These latter expressions
are more complicated, and become undefined if r = rc is naively imposed. However, through
integrating the Sk(r) derivatives, we obtain the necessary terms to define v(r). We may then
substitute these various components of the ansatz into equation (8). The subsequent functions
are plotted in figure 1 for spin s = {1/2, 1, 3/2, 2}, to order O(L−6) for ` = 4.

Certain behaviours are consistent for all radial wavefunctions explored here, such as the
divergence at the boundaries and the shift of π/2 between real and imaginary components.
We observe, however, a decrease (an increase) in the amplitude for increasing s for integer
(half-integer) cases. Irrespective of the spin, an increase in ` corresponds to an increase in
the amplitude and a decrease in the wavelength of these radial profiles, as demonstrated in
figure 2. Furthermore, there is notable shifting from one wavefunction to the next, with Dirac
and gravitational wavefunctions shifted ahead of their Rarita-Schwinger and electromagnetic
counterparts.

Despite these features, it was noted in Ref. [11] that the radial profile does not offer much
in terms of physical insight. It is important to remember that our starting point of equation
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(a) Dirac QNM with ` = 4.
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(b) Electromagnetic QNM with ` = 4.
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(c) Rarita-Schwinger QNM with ` = 4.
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(d) Gravitational QNM with ` = 4.

Figure 1: The radial wavefunctions for QNMs of spin s = {1/2, 1, 3/2, 2} for Schwarzschild BHs
with ` = 4. Real and imaginary components are denoted by purple and orange, respectively.
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(a) Dirac QNM with ` = 10.

4 6 8 10 12
r

-3× 10
61

-2 × 10
61

-1× 10
61

1× 10
61

2 × 10
61

3× 10
61

Φ

(b) Dirac QNM with ` = 20.

Figure 2: The radial wavefunctions for QNMs of spin s = 1/2 for Schwarzschild BHs with ` = 10
and ` = 20. Real and imaginary components are denoted by purple and orange, respectively.

(3) represents the isolated radial behaviour. However, understanding the radial component is a
necessary first step into calculating the full waveform in any 4D Schwarzschild application.

4. Conclusions
The Dolan-Ottewill method is an efficient, economical method that allows for the computation
of QNFs to high orders in L−k with relative ease. As a physically-motived method, it is easy to
match the method with the appropriate context, and therefore avoid the limitations discussed
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in Ref. [10]. An especially interesting aspect of the method is its flexibility: here, we have
demonstrated the simple means by which it can be extended to the computation of radial
QNM wavefunctions; in Ref. [13], we explored the various non-rotating, spherically-symmetric
BH spacetimes to which the Dolan-Ottewill method may also be applied. Since focus in the
literature has been concentrated on the development of computational methods for QNFs [5, 9],
the Dolan-Ottewill method becomes especially valuable for its use in the calculation of the
relatively underexplored QNM wavefunctions.

Further extensions, however, are highly desirable viz. through an incorporation of temporal
and angular components into our assessment of the QNM wavefunction. Studies into physically
relevant aspects of the QNM contribution through the use of the Dolan-Ottewill method is
already underway: in Ref. [12], Dolan and Ottewill combined their expansion method with a
WKB analysis in order to compute the “QNM excitation coefficient” from the residues of the
poles in the Green function for the scalar field within the 4D Schwarzschild context. This aids
in the establishment of a more complete description for the QNM response in the wake of a
BH perturbation. To explore these computations beyond the scalar field and Schwarzschild BH
spacetime would be interesting.

Moreover, an investigation into the application of the Dolan-Ottewill method to higher-
dimensional BHs may be possible. This was demonstrated in Ref. [11], where Dolan and
Ottewill computed the lowest terms in the QNF expansion for the gravitational perturbations
of a d-dimensional Schwarzschild BH. Whether this can be extended to AdS BH spacetimes
remains an open question. Rotating BH spacetimes, however, may be accommodated. This was
suggested in Ref. [20], where an additional expansion was introduced via the angular eigenvalue.
We reserve exploration into these various avenues for future works.
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